
HLAPI Tutorial
Version 1.1.3

1. About

The High-Level Python API allows mass configuration and visualization of PDU Products
through ethernet. The HLAPI dynamically communicates with PDU devices using both
HTTP and IPAPI.

2. Setup

2.1 Dependencies
In order to use the high-level API, Python version 3.5 or higher must be installed on your
system.

2.2 Installation
Download the HLAPI and unzip the downloaded archive.

2.3 Duality
The high-level API can be used in two ways: from the command line and as a python
package. The command line usage is limited to simple reading and writing of data to a
defined list of targets. When importing the HLAPI from a python script you will have full
control over the API at the cost of complexity.

3. Command line usage

3.1 Preparation
Change your current working directory to the folder above hlapi.

$ cd path/to/folder/above/hlapi

$ ls

hlapi

 HLAPI needs to be executed as a Python module. The command line syntax is:

$ python3 -m hlapi.hlapi

 -t /path/to/targets.json [required]

 -r "register1,register2,..."

 -w "register1=value1,register2=value2,..."

 -s, --pretty, --debug

Note that the -m flag tells Python to execute the file hlapi in the package hlapi as a
module.

1

http://documentation.schleifenbauer.eu/

3.2 Command line options

-t Targets JSON file (required)
This parameter must point to a file containing the target devices with corresponding
credentials. Example file contents:

{

"192.168.1.*": {

"webapi_port": 80,

"webapi_user": "username",

"webapi_pass": "password",

"ipapi_key": "1234567890123456"

},

"192.168.2.200": {

"webapi_port": 80,

"webapi_user": "username",

"webapi_pass": "password",

"ipapi_key": "1234567890123456"

},

"192.168.3.111#15": {

"webapi_port": 80,

"webapi_user": "username",

"webapi_pass": "password",

"ipapi_key": "1234567890123456"

}

}

Each first-level key represents an interface which could either be: an entire subnet
(192.168.1.* in the example above), an interface including all devices connected to it
which would be a bridge/hybrid PDU or gateway (direct IP address, 192.168.2.200 in the
example above) or a specific unit in a ring of PDU devices (192.168.3.111#15 in the
example above).

HLAPI automatically filters out duplicate entries such as 192.168.1.* and 192.168.1.20.
Subnet scans are prioritized, interfaces after that and direct devices in the last place.

Note that when scanning a subnet, the given credentials will be used for all found devices.

-r Read
This parameter requires a comma-separated list of register mnemonics (refer to the
SPDM).
Example: python3 -m hlapi.hlapi -t exampletargets.json -r
"idfwvs,idsnbr,idchip"

2

-w Write
This parameter requires a comma-separated list of register mnemonics (refer to the
SPDM) and associated write values using the 'equals to' sign (=).

Example: python3 -m hlapi.hlapi -t exampletargets.json -w
"stdvnm=some_name,stdvlc=some_location"

You are required to use either -r or -w, both cannot be used at the same time.

-s Silent (optional)
Only prints the final result in JSON to the console.

--pretty (optional)
Pretty-prints the final result in JSON to the console.

--debug (optional)
Enables debug mode, verbose output will be printed to the console.

4. Python usage

4.1 Preparation
To use the high-level API to it’s full extent, it’s best to import the HLAPI from a python
script.
Get started by creating a python script in the same folder as the hlapi folder.

To execute the script, open a command prompt and change your current working directory
to the folder containing demo.py and the hlapi folder, call Python 3.5 and pass demo.py as
an argument.

In order to use any functionality of the HLAPI, a main HLAPI() instance needs to be
created.

from hlapi.hlapi import HLAPI

hlapi = HLAPI(debug=False)

The HLAPI() instance keeps track of settings such as timeouts, cache and configuration
parameters.

3

4.2 Device identification

4.2.1 Specific interface(s)
In order to perform operations on devices, Device objects need to be instantiated.
Let’s say you want to read some identification info from all devices behind (and
including) a bridge PDU.

The DeviceManager class takes care of interface scanning and device identification
for you.

For example, if the target interface has IP address 192.168.1.100, DeviceManager
will need to scan this interface's ring for PDU devices. Let’s start by scanning and
identifying devices using DeviceManager.loadInterfaces(dict). This function takes a
python dictionary as an argument, the keys can either be IP addresses or IP#UNIT
combinations. If an IP is given, all units behind that IP will respond, otherwise only
the specified devices will respond. Per interface, the values webapi_port,
webapi_user, webapi_pass and ipapi_key will need to be passed in order to
establish a connection.

from hlapi.hlapi import HLAPI

from hlapi.DeviceManager import DeviceManager

hlapi = HLAPI(debug=False)

deviceManager = DeviceManager(hlapi)

interfaces = {

"192.168.9.100": {

"webapi_port": 80,

"webapi_user": "power",

"webapi_pass": "power",

"ipapi_key": "0000000000000000"

}

}

deviceManager.loadInterfaces(interfaces)

for device in deviceManager.devices:

print(device)

After running this script, our DeviceManager instance has a ‘devices’ variable that
contains a list of Device objects. Each one of these objects represents a physical
PDU device.

4

$ python3 device_identification_demo.py

<hlapi.devices.Devices.hPDU object at 0x10c98bac8>

<hlapi.devices.Devices.hPDU object at 0x103152ba8>

<hlapi.devices.Devices.cPDU object at 0x10c80dcf8>

<hlapi.devices.Devices.hPDU object at 0x10c98beb8>

<hlapi.devices.Devices.cPDU object at 0x10c98ba20>

4.2.2 Network scanning (subnet)
HLAPI has a built-in network scanner making it easy to detect PDU devices on your
network. In this example we will be scanning the subnet 192.168.1.0 until
192.168.1.255:

import time

from hlapi.hlapi import HLAPI

from hlapi.NetworkScanner import NetworkScanner

from hlapi.DeviceManager import DeviceManager

hlapi = HLAPI(debug=False)

subnet = "192.168.9.*" # * means scan from .0 to .255

http_port = 80

webapi_user = "power"

Start scanning

networkScanner = NetworkScanner(hlapi, subnet, http_port,

webapi_user)

networkScanner.startScan()

Wait until scanner is done, more info on progress in section 4.4

while networkScanner.progress.isRunning():

time.sleep(1)

Print the result

print(networkScanner.result)

$ python3 network_scanning_demo.py

After about 25 seconds, a list of all IP addresses that appear to be PDU devices
is returned.
This list can be fed into DeviceManager (as explained in section 4.2.1) to scan
databus rings and identify all all associated devices.

5

4.3 Synchronously reading/writing data
In order to read or write data from/to devices, there are a few options. Let’s go over
them in ascending level of usage complexity.

Read Write

→ MultiReadWrite.readSingle()
→ MultiReadWrite.readAll()
→ AbstractDevice.read()
→ Communicator.read()
→ [WEB/IP]APIProtocol.read()

→ MultiReadWrite.writeSingle()
→ MultiReadWrite.writeAll()
→ AbstractDevice.write()
→ Communicator.write()
→ [WEB/IP]APIProtocol.write()

It makes sense to go over each way of accessing data from high to low level.
Note: see section 5.1 for a detailed schematic of how the HLAPI is structured.

4.3.1 Read/write a single register using MultiReadWrite.readSingle()
MultiReadWrite.readSingle() allows you to read a single registers from a set of devices.
Let's try to read the firmware version of all devices behind (and including) interface
192.168.1.100:

from hlapi.hlapi import HLAPI

from hlapi.DeviceManager import DeviceManager

from hlapi.managers.MultiReadWrite import MultiReadWrite

interfaces = {

"192.168.9.100": {

"webapi_port": 80,

"webapi_user": "power",

"webapi_pass": "power",

"ipapi_key": "0000000000000000"

}

}

hlapi = HLAPI(debug=False)

identify devices

deviceManager = DeviceManager(hlapi)

6

On execution, this gives us a list of all identified devices and their associated firmware
versions:

$ python3 read_write_registers_managers_demo.py

192.168.1.100#1 244

192.168.1.100#2 244

192.168.1.100#3 150

192.168.1.100#4 150

192.168.1.100#5 244

192.168.1.100#6 244

4.3.2 Read/write multiple registers using MultiReadWrite.readAll()

You might want to read more than a single register from a selection of devices.
MultiReadWrite.readAll() is a powerful function, it allows reading multiple registers from
multiple devices either synchronously or asynchronously.

This function takes a list of register mnemonics as input. Refer to the SPDM for
documentation on the registers available.

For this example we’ll try to read 3 registers from 5 devices: firmware version, serial
number and the devices' maximum rated load. The register mnemonics for these
registers are idfwvs, idsnbr and cfamps respectively.

from hlapi.hlapi import HLAPI

from hlapi.DeviceManager import DeviceManager

from hlapi.managers.MultiReadWrite import MultiReadWrite

interfaces = {

"192.168.9.100": {

"webapi_port": 80,

"webapi_user": "power",

"webapi_pass": "power",

"ipapi_key": "0000000000000000"

}

}

mnemonics = ['idfwvs', 'idsnbr', 'cfamps']

hlapi = HLAPI(debug=False)

identify devices

7

Upon execution, this gives us the following result:

$ python3 abstract_manager_readall_demo.py

192.168.1.100#1

 idfwvs 244

 idsnbr SVNL00036483

 cfamps 16

192.168.1.100#2

 idfwvs 244

 idsnbr SVNL00042553

 cfamps 32

192.168.1.100#3

 idfwvs 150

 idsnbr SVNL00026870

 cfamps 32

192.168.1.100#4

 idfwvs 150

 idsnbr SVNL00018449

 cfamps 32

192.168.1.100#5

 idfwvs 244

 idsnbr SVNL00042856

 cfamps 32

4.3.3 Direct device read/write

Each Device object has its own read() and write() functions. Retrieved data is cached
per Device object. (A note on caching: when reading data from a device which as been
read previously, the cached data will be returned if this data has not yet expired
(depending on the config value, 1000 seconds by default). You can disable caching
globally by setting the cache_expire config value to 0 or by passing cache=False as an
argument to Device.read())

The read() function takes a readValue and a readType as arguments. readType must
be either ‘single’ or ‘group’. The readValue must be a valid register mnemonic if
readType is ‘single’ or an SPDM group name if readType is ‘group’.

When a single register is read, the entire group that this register belongs to will
automatically be read for caching purposes since PDU devices respond just as
quickly to a group read as a single register read.

To demonstrate direct register reading, writing and caching we will first read a single
register (device name, stdvnm) twice, then set a new device name and read the
register again.

8

from time import time

from hlapi.hlapi import HLAPI

from hlapi.DeviceManager import DeviceManager

from hlapi.managers.MultiReadWrite import MultiReadWrite

interfaces = {

"192.168.9.100": {

"webapi_port": 80,

"webapi_user": "power",

"webapi_pass": "power",

"ipapi_key": "0000000000000000"

}

}

hlapi = HLAPI(debug=False)

deviceManager = DeviceManager(hlapi)

deviceManager.loadInterfaces(interfaces)

take only the first device

targetDevice = deviceManager.devices[0]

start_time = time()

print(targetDevice.read('stdvnm', 'single'))

print("Elapsed: {0:.3f}".format(time()-start_time), "s")

start_time = time()

print(targetDevice.read('stdvnm', 'single'))

print("Elapsed: {0:.3f}".format(time()-start_time), "s")

targetDevice.write('stdvnm', 'single', 'new_name')

print(targetDevice.read('stdvnm', 'single'))

Output:

$ python3 direct_read_write_demo.py

{'stdvnm': 'foobar'}

Elapsed: 0.664 s

{'stdvnm': 'foobar'}

Elapsed: 0.000 s

{'stdvnm': 'new_name'}

9

As can be seen, the first read takes a little more than half a second, the second time
this register is returned instantly from cache and after writing a new value, the cache is
reset.

4.4 Asynchronous usage and ProgressManagers
When communicating with many devices behind different interfaces at the same time,
execution times will increase. You might want the API to read or write data while your
application does something else in the meantime. Luckily, most functions such as mass
reading, writing, identification or network scanning can be called asynchronously.
The asynchronous functions throughout the HLAPI all use a so-called ProgressManager.
This is an object that keeps track of a background operation’s status, progress and
associated threads.

Here’s how a ProgressManager works:

A ProgressManager will keep track of a task's progress, target, percentage, status, other
(child) ProgressManagers and associated threads.

- The state can either be None, running, finished, aborted or error. A ProgressManager is
initialized once a target value has been set. The ProgressManager’s internal state will
change from None it’s defined ‘run state’. The method waitForInit() blocks until a target
has been set.
- Progress can be set or added using setProgress() and addProgress() respectively. The
same goes for the ProgressManager’s target.
- getStatus() returns a tuple with the ProgressManager’s current state, percentage,
progress, and target values.
- When an invalid progress or target value is given, the ProgressManager falls into it’s
‘error state’.
- The functions isDone(), isError(), isRunning() and isAborted() return True or False
depending on the ProgressManager’s current state.
- External threads can be associated with a ProgressManager using the method
addThreadWatch(). closeThreads() is a blocking function that waits for all associated
threads to finish before returning.
- Multiple ProgressManagers can be linked using addChildProgress(). Upon getting the
parent’s state, all child progress and target values will be inherited recursively and
summed. The method isDone() only returns True if all child processes are done too.
Aborting the parent ProgressManager will abort all child ProgressManagers.

10

- When initializing a ProgressManager with parameter explicitFinish = True, the ‘end state’
will not automatically be reached when the progress value hits the target value. Instead, a
call to the method finish() is needed.

HLAPI functions such as DeviceManager.startLoadInterfaces,
MultiReadWrite.startReadAll(), NetworkScanner.startScan(), etc. automatically create a
ProgressManager for you to use. Also notice that these function names begin with start
(eg. startReadAll instead of readAll), this will make the functions return immediately to
allow your program to continue and handle progress using a ProgressManager.

As an example, we'll be combining databus scanning, device identification and mass
reading all in one piece of code, asynchronously.

import time

from hlapi.hlapi import HLAPI

from hlapi.DeviceManager import DeviceManager

from hlapi.managers.MultiReadWrite import MultiReadWrite

interfaces = {

"192.168.9.100": {

"webapi_port": 80,

"webapi_user": "power",

"webapi_pass": "power",

"ipapi_key": "0000000000000000"

}

}

read some PDU alert values

mnemonics = ['ssstat', 'ssttri', 'ssitri', 'ssotri', 'ssvtri']

method to print progress percentage

def showPercentage(progressManager):

progressManager.waitForInit() # make sure the process has

started

last_percentage = 0

print("0%")

while progressManager.isRunning():

percentage = progressManager.getStatus()[1]
if percentage > last_percentage+10:

print(str(percentage)+"%")

last_percentage = percentage

time.sleep(0.1)

print("100%")

11

progressManager.closeThreads() # make sure the process ends

hlapi = HLAPI(debug=False)

scan databus, identify devices

deviceManager = DeviceManager(hlapi)

deviceManager.startLoadInterfaces(interfaces)

showPercentage(deviceManager.progress)

devices = deviceManager.devices

print(len(devices), "devices found")

read registers from found devices

multiReadWrite = MultiReadWrite(hlapi, devices)

multiReadWrite.startReadAll(mnemonics)

showPercentage(multiReadWrite.progress)

pretty-print result

for uid, output in multiReadWrite.result.items():

print(uid)

for mnemonic, value in output['data'].items():

print("\t", mnemonic, value)

As you can see, after starting a process, you can make the program do something else
until progressManager.isRunning() indicates that the process is finished. Once that
happens, It is recommended to verify if the ProgressManager finished normally or with an
error using ns.progress.isAborted() or ns.progress.isError().

$ python3 async_progress_manager_demo.py

0%

...

100%

27 devices found

0%

...

100%

192.168.9.100#13

 ssstat 0

 ssvtri 0

 ssotri 0

 ssttri 0

 ssitri 0

192.168.9.100#17

12

 ssstat 0

 ssvtri 0

13

5. HLAPI Schematic

14

